Category Archives: Klimaattransitie

AI’s Power Demand

AI results in a large increase of data center power demand, and does have a large effect on natural resources.

In 2018, OpenAI concluded that the computing power required to train a large AI model had doubled every 3.5 months from 2012 onwards. The accuracy of results and time efficiency that can be achieved by harnessing the computing power of a vast number of computers in data centres necessitates a considerable amount of electricity. A significant proportion of data centres globally continue to rely, to some extent, on fossil fuels, resulting in a notable surge in CO₂ emissions.

In 2020, researchers at the University of Massachusetts conducted an analysis of several natural language processing (NLP) models and determined that the energy expenditure associated with training a single model resulted in CO2 emissions of approximately 300,000 kg on average (equivalent to 125 return flights from New York to Beijing). The training of ChatGPT-3 has been found to require the consumption of 1.3 gigawatt hours of electricity, resulting in the generation of 550,000 kg of CO2. It is estimated by Bloomberg that the energy consumption necessary for training is only 40% of that required for operational purposes. Moreover, the training process necessitates the consumption of approximately 700,000 litres of water for the purpose of computer cooling. This quantity of water is equivalent to that which would be required by a nuclear power plant cooling tower.

In 2023, data centres operated by Google extracted a total of 24 billion litres of water from the environment. This represents a 14% increase compared to figures recorded in the previous year. In 2022, 20 billion litres of water were employed for the purpose of cooling. Two-thirds of this quantity was comprised of potable water.

Furthermore, data from Microsoft’s facilities indicate a 34% increase in cooling water consumption during the same period. In 2024, Microsoft’s CO₂ emissions were 30% higher than in 2020, while Google’s emissions increased by 48% over the past five years.

See this blogpost by GoldmanSachs

For literature used to compose this post, see here.

Publishd in a LinkedIn-post, november 2024.

Share This:

Vertalingen: ‘Ecological footprint’ en ‘Archiving in 2050’

Op verzoek van enkele van mijn internationale relaties heb ik mijn onlangs gepubliceerde artikelen: ‘De ecologische voetafdruk van Artificial Intelligence’ en ‘Archivering in 2050’ vertaald naar het Engels. Ik neem beide vertalingen hieronder op. Ze zijn vrij om te downloaden en te verspreiden.

In response to requests from several of my international colleagues, I have translated two recently published articles, ‘De ecologische voetafdruk van Artificial Intelligence’ and ‘Archivering in 2050’, into English. Both translations are presented below and are available for download and distribution at no cost.

Follow ‘Continue Reading’ to view and download.

Continue reading

Share This:

De ecologische voetafdruk van Artificial Intelligence

Artificial Intelligence (AI) biedt kansen. Het biedt mogelijkheden voor vooruitgang in gezondheidszorg, communicatie, bestuur en productie. Het biedt mogelijkheden voor het creëren van tekst, beeld, geluid en kunst. Het helpt om de effecten van de klimaatcrisis op te vangen door intelligente energienetten te ontwikkelen, door infrastructuren te ontwikkelen die geen of nauwelijks CO2 emissie hebben en door klimaatvoorspellingen te modelleren.

Niet alles is positief. AI speelt een groeiende rol in de verspreiding van ‘fake news’, ‘deep fakes’ en andere vormen van misinformatie waardoor onze democratische samenleving wordt bedreigd door populisme en polarisatie.

Een onduidelijker effect van AI is het ecologisch effect dat het heeft. Daar is de afgelopen paar jaar veel over gepubliceerd, maar het duurt lang voordat berichten daarover in het maatschappelijke bewustzijn indalen.

Continue reading

Share This: