11 mei 2009
Twee Madrileense onderzoekers hebben een vooralsnog onopgemerkt patroon in de distributie van priemgetallen weten bloot te leggen. De ontdekking zou onder meer zijn weerslag op cryptografische beveiliging kunnen hebben. De twee onderzoekers, Bartolo Luque en Lucas Lacasa van de Spaanse Universidad Politécnica de Madrid, ontdekten een tot dusverre onbekende wetmatigheid in de distributie van priemgetallen. Op het eerste gezicht lijken priemgetallen – getallen die alleen door zichzelf en door 1 deelbaar zijn, willen ze een geheel getal als quotiënt opleveren – willekeurig voor te komen. Mede hierdoor is het zoeken naar grote priemgetallen, die onder meer in de cryptografie gebruikt worden, een rekenintensief karwei: het is niet mogelijk om een computer aan de hand van een formule in een reeks getallen de priemgetallen aan te laten wijzen. De twee Spaanse wiskundigen hebben ontdekt dat een verschijnsel dat als de Wet van Benford bekend staat, ook voor beperkte reeksen priemgetallen geldt. Deze wet stelt dat de verdeling van cijfers in willekeurige getalreeksen een logaritmische schaal volgt.